Induction of Probabilistic Synchronous Tree-insertion Grammars

نویسندگان

  • REBECCA NESSON
  • STUART M. SHIEBER
چکیده

Draft. Comments weolcomed. Please do not cite or quote without prior consent. Revision 1.9 of August 15, 2005, 15:45:21, generated August 15, 2005. Increasingly, researchers developing statistical machine translation systems have moved to incorporate syntactic structure in the models that they induce. These researchers are motivated by the intuition that the limitations in the finite-state translation models exemplified by IBM’s “Model 5” follow from the inability to use phrasal and hierarchical information in the interlingual mapping. What is desired is a formalism that has the substitution-based hierarchical structure provided by context-free grammars, with the lexical relationship potential of n-gram models, with processing efficiency no worse than CFGs. Further, it should ideally allow for discontinuity in phrases, and be synchronizable, to allow for multilinguality. Finally, in order to support automated induction, it should allow for a probabilistic variant. We introduce probabilistic synchronous tree-insertion grammars (PSTIG) as such a formalism. In this paper, we define a restricted version of PSTIG, and provide algorithms for parsing, parameter estimation, and translation. As a proof of concept, we successfully apply these algorithms to a toy problem, corpus-based induction of a statistical translator of arithmetic expressions from postfix to partially parenthesized infix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decoder for Probabilistic Synchronous Tree Insertion Grammars

Synchronous tree insertion grammars (STIG) are formal models for syntaxbased machine translation. We formalize a decoder for probabilistic STIG; the decoder transforms every source-language string into a target-language tree and calculates the probability of this transformation.

متن کامل

Machine Translation Using Probabilistic Synchronous Dependency Insertion Grammars

Syntax-based statistical machine translation (MT) aims at applying statistical models to structured data. In this paper, we present a syntax-based statistical machine translation system based on a probabilistic synchronous dependency insertion grammar. Synchronous dependency insertion grammars are a version of synchronous grammars defined on dependency trees. We first introduce our approach to ...

متن کامل

An Empirical Evaluation of Probabilistic Lexicalized Tree Insertion Grammars

We present an empirical study of the applicability of Probabilistic Lexicalized Tree Insertion Grammars (PLTIG), a lexicalized counterpart to Probabilistic Context-Free Grammars (PCFG), to problems in stochastic naturallanguage processing. Comparing the performance of PLTIGs with non-hierarchicalN -gram models and PCFGs, we show that PLTIG combines the best aspects of both, with language modeli...

متن کامل

Exploring the Spinal-STIG Model for Parsing French

We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar framework: a Stochastic Tree Insertion Grammar model (STIG) and a specific instance of this formalism, called Spinal Tree Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small treebanks such as the Paris 7 French Treebank....

متن کامل

Exploring the Spinal-Tig Model for Parsing French

We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar framework: a Stochastic Tree Insertion Grammar model (STIG) and a specific instance of this formalism, called Spinal Tree Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small treebanks such as the Paris 7 French Treebank....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005